回溯算法

2024-05-16

回溯算法理论基础

什么是回溯法

回溯法也可以叫做回溯搜索法,它是一种搜索的方式。回溯是递归的副产品,只要有递归就会有回溯。回溯函数也就是递归函数,指的都是一个函数

回溯法的效率

虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法

因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。

那么既然回溯法并不高效为什么还要用它呢?

因为没得选,一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。

回溯法解决的问题

  • 组合问题:N 个数里面按一定规则找出 k 个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个 N 个数的集合里有多少符合条件的子集
  • 排列问题:N 个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N 皇后,解数独等等

如何理解回溯

回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!

因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度就构成了树的深度

递归就要有终止条件,所以必然是一棵高度有限的树(N 叉树)。

回溯模板

回溯算法三部曲:

1.确定回溯函数的返回值和参数
在回溯算法中,我的习惯是函数起名字为backtracking,这个起名大家随意。
回溯算法中函数返回值一般为void。
再来看一下参数,因为回溯算法需要的参数可不像二叉树递归的时候那么容易一次性确定下来,所以一般是先写逻辑,然后需要什么参数,就填什么参数。
void backtracking(参数)

2.确定回溯函数终止条件
什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。
if (终止条件) {
    存放结果;
    return;
}

3.回溯搜索的遍历过程
回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
    处理节点;
    backtracking(路径,选择列表); // 递归
    回溯,撤销处理结果
}

回溯算法理论基础

77.组合

给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合。

示例: 输入: n = 4, k = 2 输出: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ]

组合问题可以抽象为下面的树形结构:

77.组合

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围

图中可以发现 n 相当于树的宽度,k 相当于树的深度

那么如何在这个树上遍历,然后收集到我们要的结果集呢?

图中每次搜索到了叶子节点,我们就找到了一个结果

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n 个数中 k 个数的组合集合。

1.确定回溯函数的返回值以及参数
首先要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。
vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件结果

函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。
然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。
void backtracking(int n, int k, int startIndex)

2.确定回溯函数的终止条件
path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。
此时用result二维数组,把path保存起来,并终止本层递归。
if (path.size() == k) {
    result.push_back(path);
    return;
}

3.确定单层搜索的过程
for循环每次从startIndex开始遍历,然后用path保存取到的节点i。
backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。
backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。相当于换一个子节点进行遍历
class Solution {
private:
    vector<vector<int>> result; // 存放符合条件结果的集合
    vector<int> path; // 用来存放符合条件结果
    void backtracking(int n, int k, int startIndex) {
        if (path.size() == k) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i <= n; i++) {
            path.push_back(i); // 处理节点
            backtracking(n, k, i + 1); // 递归
            path.pop_back(); // 回溯,撤销处理的节点
        }
    }
public:
    vector<vector<int>> combine(int n, int k) {
        result.clear(); // 可以不写
        path.clear();   // 可以不写
        backtracking(n, k, 1);
        return result;
    }
};
时间复杂度: O(n * 2^n)
空间复杂度: O(n)

剪枝优化

来举一个例子,n = 4,k = 4 的话,那么第一层 for 循环的时候,从元素 2 开始的遍历都没有意义了。 在第二层 for 循环,从元素 3 开始的遍历都没有意义了。因为长度已经不够了

77.组合4

图中每一个节点(图中为矩形),就代表本层的一个 for 循环,那么每一层的 for 循环从第二个数开始遍历的话,都没有意义,都是无效遍历。

所以,可以剪枝的地方就在递归中每一层的 for 循环所选择的起始位置

如果 for 循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了

for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置

如果 i = n - (k - path.size()) + 1,那么它右边的节点一定满足不了需要的 k

216.组合总和 III

找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。

说明:
所有数字都是正整数。
解集不能包含重复的组合。

示例 1: 输入: k = 3, n = 7 输出: [[1,2,4]]

示例 2: 输入: k = 3, n = 9 输出: [[1,2,6], [1,3,5], [2,3,4]]
本题就是在[1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合。
本题k相当于树的深度,9(因为整个集合就是9个数)就是树的宽度。
例如 k = 2,n = 4的话,就是在集合[1,2,3,4,5,6,7,8,9]中求 k(个数) = 2, n(和) = 4的组合。
选取过程如图:

216.组合总和III

回溯算法三部曲:
1.确定递归函数参数
targetSum(int)目标和,也就是题目中的n。
k(int)就是题目中要求k个数的集合。
sum(int)为已经收集的元素的总和,也就是path里元素的总和。
startIndex(int)为下一层for循环搜索的起始位置。

2.确定终止条件
k其实就已经限制树的深度,因为就取k个元素,树再往下深了没有意义。
所以如果path.size() 和 k相等了,就终止。
如果此时path里收集到的元素和(sum) 和targetSum(就是题目描述的n)相同了,就用result收集当前的结果。

3.单层搜索过程
处理过程就是 path收集每次选取的元素,相当于树型结构里的边,sum来统计path里元素的总和。
class Solution {
private:
    vector<vector<int>> result; // 存放结果集
    vector<int> path; // 符合条件的结果
    void backtracking(int targetSum, int k, int sum, int startIndex) {
        if (path.size() == k) {
            if (sum == targetSum) result.push_back(path);
            return; // 如果path.size() == k 但sum != targetSum 直接返回
        }
        for (int i = startIndex; i <= 9; i++) {
            sum += i; // 处理
            path.push_back(i); // 处理
            backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
            sum -= i; // 回溯
            path.pop_back(); // 回溯
        }
    }

public:
    vector<vector<int>> combinationSum3(int k, int n) {
        result.clear(); // 可以不加
        path.clear();   // 可以不加
        backtracking(n, k, 0, 1);
        return result;
    }
};
时间复杂度: O(n * 2^n)
空间复杂度: O(n)

17.电话号码的字母组合

给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。
给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。

示例:
输入:"23"
输出:["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"].

说明:尽管上面的答案是按字典序排列的,但是你可以任意选择答案输出的顺序。

17. 电话号码的字母组合

图中可以看出遍历的深度,就是输入"23"的长度,而叶子节点就是我们要收集的结果,输出["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]。

回溯算法三部曲:
1.确定回溯函数参数
这个index是记录遍历第几个数字了,就是用来遍历digits的(题目中给出数字字符串),同时index也表示树的深度。

2.确定终止条件
如果index 等于 输入的数字个数(digits.size)了(本来index就是用来遍历digits的)。
然后收集结果,结束本层递归。

3.确定单层遍历逻辑
首先要取index指向的数字,并找到对应的字符集(手机键盘的字符集)。
然后for循环来处理这个字符集
class Solution {
private:
    const string letterMap[10] = {
        "", // 0
        "", // 1
        "abc", // 2
        "def", // 3
        "ghi", // 4
        "jkl", // 5
        "mno", // 6
        "pqrs", // 7
        "tuv", // 8
        "wxyz", // 9
    };
public:
    vector<string> result;
    string s;
    void backtracking(const string& digits, int index) {
        if (index == digits.size()) {
            result.push_back(s);
            return;
        }
        int digit = digits[index] - '0';        // 将index指向的数字转为int
        string letters = letterMap[digit];      // 取数字对应的字符集
        for (int i = 0; i < letters.size(); i++) {
            s.push_back(letters[i]);            // 处理
            backtracking(digits, index + 1);    // 递归,注意index+1,一下层要处理下一个数字了
            s.pop_back();                       // 回溯
        }
    }
    vector<string> letterCombinations(string digits) {
        s.clear();
        result.clear();
        if (digits.size() == 0) {
            return result;
        }
        backtracking(digits, 0);
        return result;
    }
};
时间复杂度: O(3^m * 4^n),其中 m 是对应四个字母的数字个数,n 是对应三个字母的数字个数
空间复杂度: O(3^m * 4^n)

39. 组合总和

给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的数字可以无限制重复被选取。

说明:
所有数字(包括 target)都是正整数。
解集不能包含重复的组合。

示例 1:
输入:candidates = [2,3,6,7], target = 7,
所求解集为: [ [7], [2,2,3] ]

39.组合总和

回溯三部曲:
1.递归函数参数
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex)

2.递归终止条件
if (sum > target) {
    return;
}
if (sum == target) {
    result.push_back(path);
    return;
}

3.单层搜索的逻辑
单层for循环依然是从startIndex开始,搜索candidates集合。
class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
        if (sum > target) {
            return;
        }
        if (sum == target) {
            result.push_back(path);
            return;
        }

        for (int i = startIndex; i < candidates.size(); i++) {
            sum += candidates[i];
            path.push_back(candidates[i]);
            backtracking(candidates, target, sum, i); // 不用i+1了,表示可以重复读取当前的数
            sum -= candidates[i];
            path.pop_back();
        }
    }
public:
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        result.clear();
        path.clear();
        backtracking(candidates, target, 0, 0);
        return result;
    }
};

40.组合总和 II

给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的每个数字在每个组合中只能使用一次。

说明: 所有数字(包括目标数)都是正整数。解集不能包含重复的组合。
示例 1:
输入: candidates = [10,1,2,7,6,1,5], target = 8,
所求解集为:
[
  [1, 7],
  [1, 2, 5],
  [2, 6],
  [1, 1, 6]
]
这道题目和39.组合总和如下区别:

本题candidates 中的每个数字在每个组合中只能使用一次。
本题数组candidates的元素是有重复的,而39.组合总和是无重复元素的数组candidates

最后本题和39.组合总和要求一样,解集不能包含重复的组合。
本题的难点在于区别2中:集合(数组candidates)有重复元素,但答案还不能有重复的组合。

关键就是如何去重,所谓去重,其实就是使用过的元素不能重复选取。

组合问题可以抽象为树形结构,那么“使用过”在这个树形结构上是有两个维度的,一个维度是同一树枝上使用过,一个维度是同一树层上使用过。

我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重。

树层去重的话,需要对数组排序!

40.组合总和II1

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used) {
        if (sum == target) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
            // used[i - 1] == false,说明同一树层candidates[i - 1]使用过
            // 要对同一树层使用过的元素进行跳过
            if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {
                continue;
            }
            sum += candidates[i];
            path.push_back(candidates[i]);
            used[i] = true;
            backtracking(candidates, target, sum, i + 1, used); // 和39.组合总和的区别1,这里是i+1,每个数字在每个组合中只能使用一次
            used[i] = false;
            sum -= candidates[i];
            path.pop_back();
        }
    }

public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        vector<bool> used(candidates.size(), false);
        path.clear();
        result.clear();
        // 首先把给candidates排序,让其相同的元素都挨在一起。
        sort(candidates.begin(), candidates.end());
        backtracking(candidates, target, 0, 0, used);
        return result;
    }
};
时间复杂度: O(n * 2^n)
空间复杂度: O(n)

131.分割回文串

给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。
返回 s 所有可能的分割方案。

示例: 输入: "aab" 输出: [ ["aa","b"], ["a","a","b"] ]

131.分割回文串

1.递归函数参数
vector<vector<string>> result;
vector<string> path; // 放已经回文的子串
void backtracking (const string& s, int startIndex)

2.递归函数终止条件
切割线切到了字符串最后面,说明找到了一种切割方法,此时就是本层递归的终止条件。

3.单层搜索的逻辑
在for (int i = startIndex; i < s.size(); i++)循环中,我们 定义了起始位置startIndex,那么 [startIndex, i] 就是要截取的子串。
首先判断这个子串是不是回文,如果是回文,就加入在vector<string> path中,path用来记录切割过的回文子串。
class Solution {
private:
    vector<vector<string>> result;
    vector<string> path; // 放已经回文的子串
    void backtracking (const string& s, int startIndex) {
        // 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
        if (startIndex >= s.size()) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i < s.size(); i++) {
            if (isPalindrome(s, startIndex, i)) {   // 是回文子串
                // 获取[startIndex,i]在s中的子串
                string str = s.substr(startIndex, i - startIndex + 1);
                path.push_back(str);
            } else {                                // 不是回文,跳过
                continue;
            }
            backtracking(s, i + 1); // 寻找i+1为起始位置的子串
            path.pop_back(); // 回溯过程,弹出本次已经添加的子串
        }
    }
    bool isPalindrome(const string& s, int start, int end) {
        for (int i = start, j = end; i < j; i++, j--) {
            if (s[i] != s[j]) {
                return false;
            }
        }
        return true;
    }
public:
    vector<vector<string>> partition(string s) {
        result.clear();
        path.clear();
        backtracking(s, 0);
        return result;
    }
};
时间复杂度: O(n * 2^n)
空间复杂度: O(n^2)

93.复原 IP 地址

给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式。
有效的 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 '.' 分隔。

例如:"0.1.2.201" 和 "192.168.1.1" 是 有效的 IP 地址,但是 "0.011.255.245"、"192.168.1.312" 和 "192.168@1.1" 是 无效的 IP 地址。

示例 1:
输入:s = "25525511135"
输出:["255.255.11.135","255.255.111.35"]

0 <= s.length <= 3000
s 仅由数字组成

93.复原IP地址

1.确定递归参数
vector<string> result;// 记录结果
// startIndex: 搜索的起始位置,pointNum:添加逗点的数量
void backtracking(string& s, int startIndex, int pointNum)

2.确定递归终止条件
本题明确要求只会分成4段,所以不能用切割线切到最后作为终止条件,而是分割的段数作为终止条件。pointNum表示逗点数量,pointNum为3说明字符串分成了4段了。
然后验证一下第四段是否合法,如果合法就加入到结果集里

3.单层搜索的逻辑
在for (int i = startIndex; i < s.size(); i++)循环中 [startIndex, i] 这个区间就是截取的子串,需要判断这个子串是否合法。
如果合法就在字符串后面加上符号.表示已经分割。
如果不合法就结束本层循环。
class Solution {
private:
    vector<string> result;// 记录结果
    // startIndex: 搜索的起始位置,pointNum:添加逗点的数量
    void backtracking(string& s, int startIndex, int pointNum) {
        if (pointNum == 3) { // 逗点数量为3时,分隔结束
            // 判断第四段子字符串是否合法,如果合法就放进result中
            if (isValid(s, startIndex, s.size() - 1)) {
                result.push_back(s);
            }
            return;
        }
        for (int i = startIndex; i < s.size(); i++) {
            if (isValid(s, startIndex, i)) { // 判断 [startIndex,i] 这个区间的子串是否合法
                s.insert(s.begin() + i + 1 , '.');  // 在i的后面插入一个逗点
                pointNum++;
                backtracking(s, i + 2, pointNum);   // 插入逗点之后下一个子串的起始位置为i+2
                pointNum--;                         // 回溯
                s.erase(s.begin() + i + 1);         // 回溯删掉逗点
            } else break; // 不合法,直接结束本层循环
        }
    }
    // 判断字符串s在左闭又闭区间[start, end]所组成的数字是否合法
    bool isValid(const string& s, int start, int end) {
        if (start > end) {
            return false;
        }
        if (s[start] == '0' && start != end) { // 0开头的数字不合法
                return false;
        }
        int num = 0;
        for (int i = start; i <= end; i++) {
            if (s[i] > '9' || s[i] < '0') { // 遇到非数字字符不合法
                return false;
            }
            num = num * 10 + (s[i] - '0');
            if (num > 255) { // 如果大于255了不合法
                return false;
            }
        }
        return true;
    }
public:
    vector<string> restoreIpAddresses(string s) {
        result.clear();
        if (s.size() < 4 || s.size() > 12) return result; // 算是剪枝了
        backtracking(s, 0, 0);
        return result;
    }
};
时间复杂度: O(3^4)IP地址最多包含4个数字,每个数字最多有3种可能的分割方式,则搜索树的最大深度为4,每个节点最多有3个子节点。
空间复杂度: O(n)

78.子集

给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。

示例: 输入: nums = [1,2,3] 输出: [ [3],   [1],   [2],   [1,2,3],   [1,3],   [2,3],   [1,2],   [] ]
如果把 子集问题、组合问题、分割问题都抽象为一棵树的话,那么组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!

子集问题也是一种集合问题,是无序的,那么既然是无序,取过的元素不会重复取,写回溯算法的时候,for就要从startIndex开始,而不是从0开始!

78.子集

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        result.push_back(path); // 收集子集,要放在终止添加的上面,否则会漏掉自己
        if (startIndex >= nums.size()) { // 终止条件可以不加
            return;
        }
        for (int i = startIndex; i < nums.size(); i++) {
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
public:
    vector<vector<int>> subsets(vector<int>& nums) {
        result.clear();
        path.clear();
        backtracking(nums, 0);
        return result;
    }
};
时间复杂度: O(n * 2^n)
空间复杂度: O(n)

90.子集 II

给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。

示例:
输入: [1,2,2]
输出: [ [2], [1], [1,2,2], [2,2], [1,2], [] ]
这道题目和78.子集区别就是集合里有重复元素了,而且求取的子集要去重。
从图中可以看出,同一树层上重复取2 就要过滤掉,同一树枝上就可以重复取2,因为同一树枝上元素的集合才是唯一子集!

90.子集II

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex, vector<bool>& used) {
        result.push_back(path);
        for (int i = startIndex; i < nums.size(); i++) {
            // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
            // used[i - 1] == false,说明同一树层candidates[i - 1]使用过
            // 而我们要对同一树层使用过的元素进行跳过
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }
            path.push_back(nums[i]);
            used[i] = true;
            backtracking(nums, i + 1, used);
            used[i] = false;
            path.pop_back();
        }
    }

public:
    vector<vector<int>> subsetsWithDup(vector<int>& nums) {
        result.clear();
        path.clear();
        vector<bool> used(nums.size(), false);
        sort(nums.begin(), nums.end()); // 去重需要排序
        backtracking(nums, 0, used);
        return result;
    }
};
时间复杂度: O(n * 2^n)
空间复杂度: O(n)

491.递增子序列

给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。

示例:
输入: [4, 6, 7, 7]
输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]

说明:
给定数组的长度不会超过15。
数组中的整数范围是 [-100,100]。
给定数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。

491. 递增子序列1

1.递归函数参数
很明显一个元素不能重复使用,所以需要startIndex,调整下一层递归的起始位置。

2.终止条件
本题其实类似求子集问题,也是要遍历树形结构找每一个节点,所以和回溯算法:求子集问题一样,可以不加终止条件,startIndex每次都会加1,并不会无限递归。
但本题收集结果有所不同,题目要求递增子序列大小至少为2

3.单层搜索逻辑
在图中可以看出,同一父节点下的同层上使用过的元素就不能再使用了
class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        if (path.size() > 1) {
            result.push_back(path);
            // 注意这里不要加return,要取树上的节点
        }
        unordered_set<int> uset; // 使用set对本层元素进行去重
        for (int i = startIndex; i < nums.size(); i++) {
            if ((!path.empty() && nums[i] < path.back())
                    || uset.find(nums[i]) != uset.end()) {
                    continue;
            }
            uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
public:
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        result.clear();
        path.clear();
        backtracking(nums, 0);
        return result;
    }
};
时间复杂度: O(n * 2^n)
空间复杂度: O(n)

46.全排列

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例:
输入: [1,2,3]
输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]

46.全排列

1.递归函数参数
首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方。
可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。
但排列问题需要一个used数组,标记已经选择的元素

2.递归终止条件
当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。

3.单层搜索的逻辑
因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。
而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次。
class Solution {
public:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking (vector<int>& nums, vector<bool>& used) {
        // 此时说明找到了一组
        if (path.size() == nums.size()) {
            result.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++) {
            if (used[i] == true) continue; // path里已经收录的元素,直接跳过
            used[i] = true;
            path.push_back(nums[i]);
            backtracking(nums, used);
            path.pop_back();
            used[i] = false;
        }
    }
    vector<vector<int>> permute(vector<int>& nums) {
        result.clear();
        path.clear();
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};
时间复杂度: O(n!)
空间复杂度: O(n)

47.全排列 II

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:
输入:nums = [1,1,2]
输出: [[1,1,2], [1,2,1], [2,1,1]]

示例 2:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:
1 <= nums.length <= 8
-10 <= nums[i] <= 10

47.全排列II1

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking (vector<int>& nums, vector<bool>& used) {
        // 此时说明找到了一组
        if (path.size() == nums.size()) {
            result.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++) {
            // used[i - 1] == true,说明同一树枝nums[i - 1]使用过
            // used[i - 1] == false,说明同一树层nums[i - 1]使用过
            // 如果同一树层nums[i - 1]使用过则直接跳过
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }
            if (used[i] == false) {
                used[i] = true;
                path.push_back(nums[i]);
                backtracking(nums, used);
                path.pop_back();
                used[i] = false;
            }
        }
    }
public:
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        result.clear();
        path.clear();
        sort(nums.begin(), nums.end()); // 排序
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};

// 时间复杂度: 最差情况所有元素都是唯一的。复杂度和全排列1都是 O(n! * n) 对于 n 个元素一共有 n! 中排列方案。而对于每一个答案,我们需要 O(n) 去复制最终放到 result 数组
// 空间复杂度: O(n) 回溯树的深度取决于我们有多少个元素

332.重新安排行程

给定一个机票的字符串二维数组 [from, to],子数组中的两个成员分别表示飞机出发和降落的机场地点,对该行程进行重新规划排序。所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。

提示:
如果存在多种有效的行程,请你按字符自然排序返回最小的行程组合。例如,行程 ["JFK", "LGA"] 与 ["JFK", "LGB"] 相比就更小,排序更靠前
所有的机场都用三个大写字母表示(机场代码)。
假定所有机票至少存在一种合理的行程。
所有的机票必须都用一次 且 只能用一次。

示例 1:
输入:[["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
输出:["JFK", "MUC", "LHR", "SFO", "SJC"]

示例 2:
输入:[["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
输出:["JFK","ATL","JFK","SFO","ATL","SFO"]
解释:另一种有效的行程是 ["JFK","SFO","ATL","JFK","ATL","SFO"]。但是它自然排序更大更靠后。

难点 1:一个行程中,如果航班处理不好容易变成一个圈,成为死循环

332.重新安排行程

出发机场和到达机场也会重复的,如果在解题的过程中没有对集合元素处理好,就会死循环。也就是如果不将从 JFK -> NRT 和 NRT -> JFK 用过的机票做标记,很容易还这样走,造成死循环

难点 2:有多种解法,字母序靠前排在前面,让很多同学望而退步,如何该记录映射关系呢 ?

一个机场映射多个机场,机场之间要靠字母序排列,一个机场映射多个机场,可以使用 std::unordered_map,如果让多个机场之间再有顺序的话,就是用 std::map 或者 std::multimap 或者 std::multiset。

有两种结构:

  • unordered_map<string, multiset> targets:unordered_map<出发机场, 到达机场的集合> targets
  • unordered_map<string, map<string, int» targets:unordered_map<出发机场, map<到达机场, 航班次数» targets

这两个结构,我选择了后者,因为如果使用unordered_map<string, multiset<string>> targets 遍历 multiset 的时候,不能删除元素,一旦删除元素,迭代器就失效了(删除元素就是为了避免死循环)。

如果“航班次数”大于零,说明目的地还可以飞,如果“航班次数”等于零说明目的地不能飞了,而不用对集合做删除元素或者增加元素的操作。

相当于说我不删,我就做一个标记!

回溯法解题:

332.重新安排行程1

回溯三部曲:
1.递归函数参数
需要ticketNum,表示有多少个航班(终止条件会用上)。
同时将结果作为参数传递,返回值是bool,因为我们只需要找到一个行程,就是在树形结构中唯一的一条通向叶子节点的路线。也就是只有唯一结果。

2.递归终止条件
我们回溯遍历的过程中,遇到的机场个数,如果达到了(航班数量+1),那么我们就找到了一个行程,把所有航班串在一起了。这时候才返回true,否则返回false.

3.单层搜索的逻辑
遍历从此机场可以去到的所有机场,如果还有票,就继续向下探索
class Solution {
private:
// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result) {
    if (result.size() == ticketNum + 1) {
        return true;
    }
    for (pair<const string, int>& target : targets[result[result.size() - 1]]) {
        if (target.second > 0 ) { // 记录到达机场是否飞过了
            result.push_back(target.first);
            target.second--;
            if (backtracking(ticketNum, result)) return true;
            result.pop_back();
            target.second++;
        }
    }
    return false;
}
public:
    vector<string> findItinerary(vector<vector<string>>& tickets) {
        targets.clear();
        vector<string> result;
        for (const vector<string>& vec : tickets) {
            targets[vec[0]][vec[1]]++; // 记录映射关系
        }
        result.push_back("JFK"); // 起始机场
        backtracking(tickets.size(), result);
        return result;
    }
};
注意:
for (pair<const string, int>& target : targets[result[result.size() - 1]])
一定要加上引用即 & target,因为后面有对 target.second 做减减操作,如果没有引用,单纯复制,这个结果就没记录下来,那最后的结果就不对了。
加上引用之后,就必须在 string 前面加上 const,因为map中的key 是不可修改了,这就是语法规定了。

51. N 皇后

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

img

  • 输入:n = 4
  • 输出:[[“.Q..”,”…Q”,”Q…”,”..Q.”],[”..Q.”,”Q…”,”…Q”,”.Q..”]]
  • 解释:如上图所示,4 皇后问题存在两个不同的解法。

首先来看一下皇后们的约束条件:

  1. 不能同行
  2. 不能同列
  3. 不能同斜线

确定完约束条件,来看看究竟要怎么去搜索皇后们的位置,其实搜索皇后的位置,可以抽象为一棵树。

51.N皇后

从图中,可以看出,二维矩阵中矩阵的高就是这棵树的高度,矩阵的宽就是树形结构中每一个节点的宽度。

那么我们用皇后们的约束条件,来回溯搜索这棵树,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了

回溯三部曲:
1.递归函数参数
参数n是棋盘的大小,然后用row来记录当前遍历到棋盘的第几层了,用chessboard表示当前棋盘分布

2.递归终止条件
n == row

3.单层搜索的逻辑
搜索当前行的每一列,如果合理就进入下一行
class Solution {
private:
vector<vector<string>> result;
// n 为输入的棋盘大小
// row 是当前递归到棋盘的第几行了
void backtracking(int n, int row, vector<string>& chessboard) {
    if (row == n) {
        result.push_back(chessboard);
        return;
    }
    for (int col = 0; col < n; col++) {
        if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
            chessboard[row][col] = 'Q'; // 放置皇后
            backtracking(n, row + 1, chessboard);
            chessboard[row][col] = '.'; // 回溯,撤销皇后
        }
    }
}
bool isValid(int row, int col, vector<string>& chessboard, int n) {
    // 检查列
    for (int i = 0; i < row; i++) { // 这是一个剪枝
        if (chessboard[i][col] == 'Q') {
            return false;
        }
    }
    // 检查 45度角是否有皇后
    for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    // 检查 135度角是否有皇后
    for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    return true;
}
public:
    vector<vector<string>> solveNQueens(int n) {
        result.clear();
        std::vector<std::string> chessboard(n, std::string(n, '.'));
        backtracking(n, 0, chessboard);
        return result;
    }
};
时间复杂度: O(n!)
空间复杂度: O(n)

37. 解数独

编写一个程序,通过填充空格来解决数独问题。

一个数独的解法需遵循如下规则: 数字 1-9 在每一行只能出现一次。 数字 1-9 在每一列只能出现一次。 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。 空白格用 '.' 表示。

给定的数独序列只包含数字 1-9 和字符 '.' 。
你可以假设给定的数独只有唯一解。
给定数独永远是 9x9 形式的。
下图是一种合理的数独解法,黑色为原本数字,红色是填充的答案

解数独

树形结构:

37.解数独

回溯三部曲:
1.递归函数以及参数
返回值是bool,因为解数独找到一个符合的条件(就在树的叶子节点上)立刻就返回,相当于找从根节点到叶子节点一条唯一路径。如果用void,那么就要找出所有填充情况,时间复杂度太高了
参数就1个,把棋盘丢进去,所有的判断条件都在棋盘中可获知

2.递归终止条件
本题递归不用终止条件,解数独是要遍历整个树形结构寻找可能的叶子节点就立刻返回。
不用终止条件会不会死循环?
递归的下一层的棋盘一定比上一层的棋盘多一个数,等数填满了棋盘自然就终止(填满当然好了,说明找到结果了),所以不需要终止条件!

3.递归单层搜索逻辑
在树形图中可以看出我们需要的是一个二维的递归 (一行一列)
一个for循环遍历棋盘的行,一个for循环遍历棋盘的列,一行一列确定下来之后,递归遍历这个位置放9个数字的可能性!
在这个位置如果9个数字都不行,那么说明这条路径就不行,直接返回FALSE,如果当行与列都遍历完后,没有返回FALSE,说明81个位置都已经变成数字,返回TRUE。

判断当前棋盘是否合法
	同行是否重复
	同列是否重复
	9宫格里是否重复
class Solution {
private:
bool backtracking(vector<vector<char>>& board) {
    for (int i = 0; i < board.size(); i++) {        // 遍历行
        for (int j = 0; j < board[0].size(); j++) { // 遍历列
            if (board[i][j] == '.') {
                for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适
                    if (isValid(i, j, k, board)) {
                        board[i][j] = k;                // 放置k
                        if (backtracking(board)) return true; // 如果找到合适一组立刻返回
                        board[i][j] = '.';              // 回溯,撤销k
                    }
                }
                return false;  // 9个数都试完了,都不行,那么就返回false
            }
        }
    }
    return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
bool isValid(int row, int col, char val, vector<vector<char>>& board) {
    for (int i = 0; i < 9; i++) { // 判断行里是否重复
        if (board[row][i] == val) {
            return false;
        }
    }
    for (int j = 0; j < 9; j++) { // 判断列里是否重复
        if (board[j][col] == val) {
            return false;
        }
    }
    int startRow = (row / 3) * 3;
    int startCol = (col / 3) * 3;
    for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复
        for (int j = startCol; j < startCol + 3; j++) {
            if (board[i][j] == val ) {
                return false;
            }
        }
    }
    return true;
}
public:
    void solveSudoku(vector<vector<char>>& board) {
        backtracking(board);
    }
};

总结

img