题目:
给你一个非负整数数组 nums
和一个整数 target
。
向数组中的每个整数前添加 '+'
或 '-'
,然后串联起所有整数,可以构造一个 表达式 :
- 例如,
nums = [2, 1]
,可以在2
之前添加'+'
,在1
之前添加'-'
,然后串联起来得到表达式"+2-1"
。
返回可以通过上述方法构造的、运算结果等于 target
的不同 表达式 的数目。
示例 1:
输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
示例 2:
输入:nums = [1], target = 1
输出:1
提示:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000
回溯算法
思路:
数组 nums 的每个元素都可以添加符号 + 或 -,因此每个元素有 2 种添加符号的方法,n 个数共有 2^n 种添加符号的方法,对应 2^n 种不同的表达式。当 n 个元素都添加符号之后,即得到一种表达式,如果表达式的结果等于目标数 target,则该表达式即为符合要求的表达式。
可以使用回溯的方法遍历所有的表达式,回溯过程中维护一个计数器 count,当遇到一种表达式的结果等于目标数 target 时,将 count 的值加 1。遍历完所有的表达式之后,即可得到结果等于目标数 target 的表达式的数目。
时间复杂度:O(2^n),其中 n 是数组 nums 的长度。回溯需要遍历所有不同的表达式,共有 2 ^n 种不同的表达式,每种表达式计算结果需要 O(1) 的时间,因此总时间复杂度是 O(2^n)。
空间复杂度:O(n),其中 n 是数组 nums 的长度。空间复杂度主要取决于递归调用的栈空间,栈的深度不超过 n。
代码:
class Solution {
public:
int count = 0;
int findTargetSumWays(vector<int>& nums, int target) {
backtrack(nums, target, 0, 0);
return count;
}
void backtrack(vector<int>& nums, int target, int index, int sum) {
if (index == nums.size()) {
if (sum == target) {
count++;
}
} else {
backtrack(nums, target, index + 1, sum + nums[index]);
backtrack(nums, target, index + 1, sum - nums[index]);
}
}
};
注意注意:这里不能用for循环取下面的每个元素,因为题目要求的是所有元素都必须用上。
动态规划
思路:
记数组的元素和为 sum,添加 - 号的元素之和为 neg,则其余添加 + 的元素之和为 sum − neg,得到的表达式的结果为 (sum − neg) − neg = sum − 2 * neg = target。即 neg =
(sum - target) / 2。由于数组 nums 中的元素都是非负整数,neg 也必须是非负整数,所以上式成立的前提是 sum−target 是非负偶数。若不符合该条件可直接返回 0。
若上式成立,问题转化成在数组 nums 中选取若干元素,使得这些元素之和等于 neg,计算选取元素的方案数。我们可以使用动态规划的方法求解。
定义二维数组 dp,其中 dp[i][j] 表示在数组 nums 的前 i 个数中选取元素,使得这些元素之和等于 j 的方案数。假设数组 nums 的长度为 n,则最终答案为 dp[n][neg]。
当没有任何元素可以选取时,元素和只能是 0,对应的方案数是 1,因此动态规划的边界条件是:
dp[0][j] = 1 while j = 0;
dp[0][j] = 0 while j >= 1;
当 1 ≤ i ≤ n 时,对于数组 nums 中的第 i 个元素 num(i 的计数从 1 开始),遍历 0 ≤ j ≤ neg,计算 dp[i][j] 的值:
如果 j < num,则不能选 num,此时有 dp[i][j] = dp[i−1][j];
如果 j ≥ num,则如果不选 num,方案数是 dp[i−1][j],如果选 num,方案数是 dp[i−1][j−num],此时有 dp[i][j] = dp[i−1][j] + dp[i−1][j−num]。
最终得到 dp[n][neg] 的值即为答案。
由此可以得到空间复杂度为 O(n × neg) 的实现。
代码:
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
int sum = 0;
for (int& num : nums) {
sum += num;
}
int diff = sum - target;
if (diff < 0 || diff % 2 != 0) {
return 0;
}
int n = nums.size(), neg = diff / 2;
vector<vector<int>> dp(n + 1, vector<int>(neg + 1));
dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
int num = nums[i - 1];
for (int j = 0; j <= neg; j++) {
dp[i][j] = dp[i - 1][j];
if (j >= num) {
dp[i][j] += dp[i - 1][j - num];
}
}
}
return dp[n][neg];
}
};